通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
受微分方程式启发的深度学习是最近的研究趋势,它标志着许多机器学习任务的最先进的表现。其中,具有神经控制的微分方程(NCDE)的时间序列建模被认为是突破。在许多情况下,基于NCDE的模型不仅比复发性神经网络(RNN)提供了更好的准确性,而且还可以处理不规则的时间序列。在这项工作中,我们通过重新设计其核心部分,即从离散的时间序列输入产生连续路径来增强NCDES。 NCDE通常使用插值算法将离散的时间序列样本转换为连续路径。但是,我们向i)提出建议,使用编码器解码器体系结构生成另一个潜在的连续路径,该架构对应于NCDE的插值过程,即我们的基于神经网络的插值与现有的显式插值相对于现有的显式插值以及II)解码器的外推超出了原始数据的时域的外推。因此,我们的NCDE设计可以同时使用插值和外推信息进行下游机器学习任务。在我们使用5个现实世界数据集和12个基线的实验中,我们的外推和基于插值的NCDES超过了非平凡的边缘的现有基线。
translated by 谷歌翻译
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
translated by 谷歌翻译
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks. * Both authors contributed equally to this work. † Work done as a member of the Google AI Residency program (g.co/airesidency). 1 Throughout this paper, we assume the conditions on the parameter distributions and nonlinearities are such that the Central Limit Theorem will hold; for instance, that the weight variance is scaled inversely proportional to the layer width.
translated by 谷歌翻译
最近的几种少数学习算法中的大多数都是基于转移学习,其中模型是使用大量源数据进行预训练的,并且随后使用少量目标数据更新了预训练的模型。在基于转移的几次学习中,已经广泛研究了复杂的预训练方法,以进行通用和改进的表示。但是,几乎没有关于更新预训练模型以进行几次学习的研究。在本文中,我们比较了两种流行的更新方法,即微调(即更新整个网络)和线性探测(即仅更新线性分类器),考虑了源数据和目标数据之间的分布变化。我们发现,随着样品数量的增加,无论分布变化如何,微型调整都比线性探测更好。接下来,我们研究了对预训练模型进行微调时,数据增强的有效性和无效性。我们的基本分析表明,需要仔细考虑有关更新预训练模型的详细信息,才能获得更好的射击性能。
translated by 谷歌翻译
跨域很少的学习(CD-FSL)最近几乎没有目标样本在源和目标域之间存在极端差异,最近引起了极大的关注。对于CD-FSL,最近的研究通常开发了基于转移学习的方法,该方法预先培训了受欢迎的标记源域数据集的神经网络,然后将其传输到目标域数据。尽管标记的数据集可以为目标数据提供合适的初始参数,但源和目标之间的域差异可能会阻碍目标域上的微调。本文提出了一种简单而功能强大的方法,该方法在适应目标数据之前将源域上拟合的参数重新传递。重新运行重置源预训练模型的特定于源特异性参数,从而促进了目标域上的微调,从而改善了几乎没有射击性能。
translated by 谷歌翻译
本文解决了单幅图像下雨的问题,即从一张多雨工件遮挡的单个图像中恢复清洁和无雨背景场景的任务。虽然最近的进步采用现实世界的延期数据来克服对雨水清洁图像的需要,但它们仅限于充分利用时间流逝数据。主要原因是,在网络架构方面,由于缺乏内存组件,它们无法在训练期间在训练期间捕获长期雨条纹信息。为了解决这个问题,我们提出了一种基于内存网络的新颖网络架构,该内存网络明确有助于在时间流逝数据中捕获长期雨条纹信息。我们的网络包括编码器 - 解码器网络和存储器网络。从编码器中提取的功能被读取并更新在包含几个存储器项中以存储雨条目感知功能表示的几个存储器项。利用读/更新操作,存储器网络根据查询检索相关的存储器项,使得存储器项能够表示在时间流逝数据中包括的各种雨条纹。为了提高内存特征的辨别力,我们还通过擦除背景信息,提出了一种用于仅捕获存储网络中的雨条信息的新型背景选择性美白(BSW)损耗。标准基准测试的实验结果证明了我们方法的有效性和优越性。
translated by 谷歌翻译
深度神经网络(DNN)如此过度参数化,最近的研究发现它们已经在随机初始化状态下具有高精度的子网。找到这些子网是一种可行的替代培训方法,可以重量学习。并行地,另一行工作已经假设了深度残差网络(Resnet)正在尝试近似浅反复性神经网络(RNN)的行为,并且已经提出了一种将它们压缩成复发模型的方法。本文提出将这些研究融合成高度压缩但准确的模型:隐藏网络(HFN)。通过将reset折叠成反复化结构,然后搜索隐藏在随机初始化模型内的准确子网,获得了高性能的尚未更新的HFN而不更新权重。因此,HFN在CIFAR100上归因于RESET50的等效性能,同时占据38.5倍较少的内存,以及在ImageNet上的类似性能,内存大小为26.8x。当在高度量化和随机加权的DNN推理加速器上运行时保持准确时,HFN将变得更具吸引力。在https://github.com/lopez-angel/hidden-fold-networks提供的代码
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译